Регуляторы давления прямого действия

Универсальные редукторы тип 41-23

Применение

Регуляторы давления для заданных значений от **5 мбар** до **28 бар** – Клапаны **Ду 15 … 100 • Ру 16 … 40 •** для жидких, газо- и парообразных сред до **350 °C**

Клапан закрывается при повышении давления за клапаном.

Отличительные свойства:

- П-регуляторы, не требующие значительного техобслуживания и вспомогательной энергии, управляемые средой
- Нефрикционное уплотнение штока конуса через нержавеющий сильфон.
- По запросу комплект импульсной трубки для отбора давления из трубопровода.
- Широкий диапазон и удобная установка заданного значения регулирующей гайкой - задатчиком.
- Заменяемые привод и пружины.
- Односедельный подпружиненный клапан с разгрузкой давления до и после (1) клапана нержавеющим сильфоном.
- Для обеспечения высокой герметичности применяется мягкоуплотняющий конус.
- Малошумный стандартный конус особая конструкция с разделителем потока St I или St III (Ду 65 – 100) для дополнительного снижения шумности (подробную информацию см. Т 8081).

Исполнение

Редуктор давления для регулирования пониженного давления p_2 на заданное значение. Клапан закрывается при повышении давления за клапаном.

Тип 41-23 - стандартная конструкция

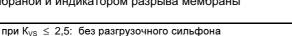
Клапан тип 2412, **Ду от 15 до 100**, с металлически уплотняемым конусом, с корпусом из серого литейного чугуна EN-JL1040, чугуна с шаровидным графитом EN-JS1049, угл. стали 1.0619, кованой стали или стали CrNiMo 1.4581; Привод **тип 2413** с тарельчатой мембраной из EPDM и резьбовым соединением. Все детали, соприкасающиеся со средой, не содержат цветных металлов.

Специальные исполнения

Редуктор давления в миллибарном диапазоне (ДУ от 15 до 80)

- для заданных значений давления от 5 до 50 мбар

Редуктор давления для малых расходов


- клапан с микрогарнитурой ($K_{VS} = 0,001$ до 0,04) или K_{VS} в специальном исполнении (суженном).

Редуктор давления пара

с конденсационным сосудом для водяного пара до 350°C

Аварийный редуктор давления

со штуцером контроля утечки и уплотнением или двойной мембраной и индикатором разрыва мембраны

Тип 41-23 - без импульсной линии Рис. 1 – универсальный редуктор давления тип 41-23

Специальное исполнение

- Монтажный комплект импульсной линии отбора давления на корпусе (дополнительное оборудование)
- Тарельчатая мембрана из FPM (фторполимера) для нефтепродуктов
- Обезмасленное и обезжиренное исполнение для кислорода с мембраной из NBR
- Мембрана из EPDM с защитной плёнкой из PTFE
- Привод для дистанционного регулирования заданного значения (регулирование автоклавов)
- Сильфонный привод для клапанов Ду 15 100 диапазоны заданного значения от 2 до 6, от 5 до 10, 10 до 22, 20 до 28 бар.
- Клапан с делителем потока St I или St III (Ду 65 100) для снижения уровня шума при работе с газами и парами.
- Целиком из нержавеющих материалов.
- Седло и конус из нержавеющей хромированной стали с уплотнением из PTFE (макс. 220°C) • с мягким уплотнением из EPDM (макс. 150 °C)
- Бронированные седло и конус для режима работы с малым износом

Обзорный лист

T 2500

Издание июль 2006

Типовой лист по комплектующим

T 2595

Типовой лист

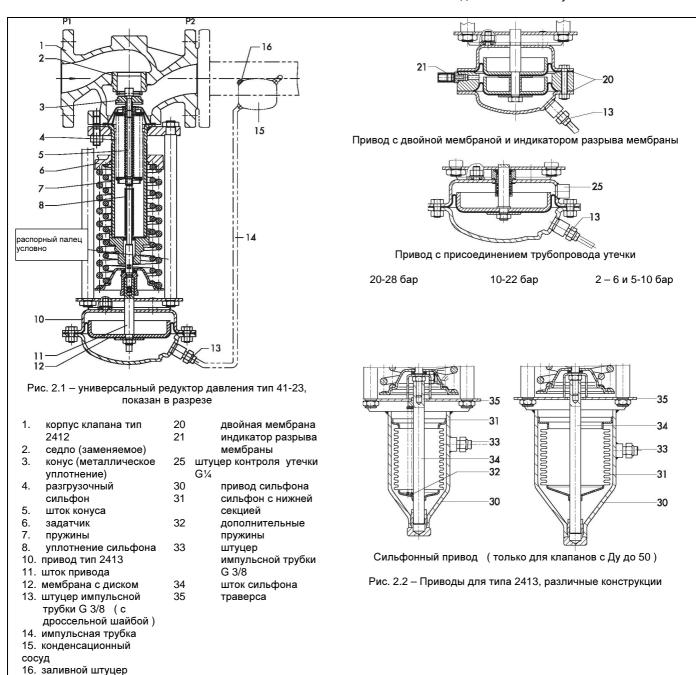
T 2512 RU

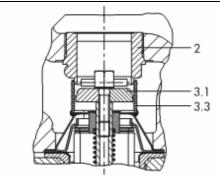
Исполнение без смазок и масел для особо чистого производства

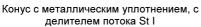
 Пластиковые детали, соприкасающиеся со средой, соответствуют требованиям FDA (макс. 60 °C)

Принцип действия (рис. 2)

Среда проходит через клапан (1) по стрелке. Положение конуса (3) определяет расход через сечение между конусом и седлом клапана (2). Шток конуса (5) связан со штоком (11) привода (10).

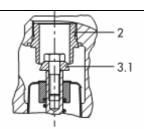

Для регулирования давления при помощи пружин (7) и задатчика (6) устанавливается предварительное напряжение рабочей мембраны (12), вследствие чего при состоянии P1 = P2 клапан открывается усилием пружин.


Рис. 2 – Принцип действия, универсальный редуктор давления тип 41-23


Регулируемое пониженное давление Р2 отбирается на выходе, по импульсной линии (14) передаётся на рабочую мембрану (12) и преобразуется в перестановочное усилие. Оно перемещает конус клапана (3) в положение в зависимости от настройки пружин (7).


Это усилие сжатия пружин устанавливается задатчиком (6). Если усилие, производимое давлением Р2, превышает заданное значение, то клапан прикрывается пропорционально изменению давления.

Клапаны с компенсацией давления имеют разгрузочный сильфон (4), внутренняя сторона которого находится под давлением Р2, а наружная сторона под входным давлением Р1. Тем самым компенсируются усилия, производимые входным и пониженным давлением на конусе клапана.



Конус с мягким уплотнением

Клапан для малых расходов — $K_{VS} \le 2$ — без разгрузочного сильфона

- 2 седло
- 3.1 конус с металлическим уплотнением
- 3.2 конус с мягким уплотнением
- 3.3 делитель потока

Рис. 3 – универсальный редуктор давления тип 41-23, техническое оснащение

Таблица 1 – технические характеристики – давления избыточное, в бар

Клапан		Ти	п 2412					
Условное давление Ру	16, 25 или 40							
Условный диаметр Ду	от 15 до 50	от 6	5 до 80	100				
Макс. доп. перепад давления	25 бар ¹⁾	20) бар ¹⁾	16 бар				
Температурные диапазоны	см. рис. 6 – диаграмма давление-температура							
конус клапана	с металлическим уплотнением: не более 350°С; с мягким уплотнением, PTFE: не более 220°С; с мягким уплотнением, EPDM: не более 150°С; с мягким уплотнением, NBR: не более 60°С							
Утечка протока (стандартная конструкция)	с металлическим уплотнением: норма утечки I ≤ 0,05% от значения K _{VS} с мягким уплотнением: норма утечки IV							
Привод мембраны	тип 2413							
Диапазоны заданного значения	от 5 до 30 мбар ²⁾ ; от 25 до 50 мбар ²⁾ ; от 0,05 до 0,25 бар; от 0,1 до 0,6 бар; от 0,2 до 1,2 бар; от 0,8 до 2,5 бар; от 2 до 5 бар; от 4,5 до 10 бар; от 8 до 16 бар							
Макс. допустим. давление на приводе	1,5 от макс. заданного значения соответствующего привода ³⁾							
Макс. доп. температура	Газы 350 °C, однако на приводе не более 80 °C; жидкости 150 °C, с конденсационным сосудом не более 350 °C; пар с конденсационным сосудом не более 350 °C							
Привод - металлический сильфон		Ти	п 2413					
Эффективная площадь		33 см ²	62 см ²					
Доп. давление на приводе		30 бар	20 бај	0				
Диапазоны заданного	10) 22 бар	2 6 бар	o ⁴⁾				
значения	2	0 28 бар	5 10 ნმ					
Пружина задатчика	8000 N							

для редукторов в миллибарном диапазоне максимально допустимый перепад давления ∆р:10 бар диапазоне 3) для редукторов в миллибарном диапазоне максимально 0,5 бар

только для редукторов в миллибарном

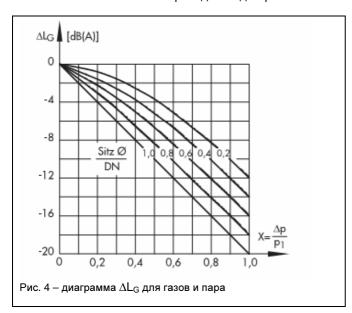
пружина задатчика 4400 N

Таблица 2 - материалы · по DIN EN

Тип 2412						
Py 16	Py 25	Py 40				
300 °C	350 °C	350 °C	350 °C	350 °C	350 °C	
серый чугун EN-JL1040	чугун с шаровидным графитом EN-JS1049	стальное литьё 1.0619	нержавеющая сталь 1.4581 ¹⁾	кованая сталь ²⁾ 1.0460	нержавеющая кованая сталь ²⁾ 1.4571	
	CrNi - сталь	•	CrNiMo- сталь	CrNi - сталь	CrNiMo-сталь	
Тефлон (PTFE) с 15% стекловолокна – EPDM∙ NBR ∙ FPM						
тефлон (PTFE) / графит						
нержавеющая сталь 1.4571						
тип 2413 стальной лист DD11(StW22) ³⁾						
EPDM с тканной прокладкой ⁴⁾ – FPM для нефтепродуктов - NBR - EPDM с защитной плёнкой из тефлона (PTFE)						
	300°C серый чугун EN-JL1040	300 °C 350 °C серый чугун чугун с EN-JL1040 шаровидным графитом EN-JS1049 СгNi - сталь Тефлон (РТFE	Ру 16	Ру 16	Ру 16 Ру 25 Ру 40 300 °C 350 °C 350 °C 350 °C серый чугун с иаровидным графитом гр	

¹⁾ Только Ду 20, 32, 65, 80 и 100 ²⁾ Только Ду 15, 25, 40, 50 и 80 ³⁾ в исполнении из хромникелевой стали

4) Стандартная конструкция, иное см. раздел «Специальные конструкции»


Таблица 3 – Значения K_{VS} и величина z

Ду	Ø седла в	K _V	s ²⁾	K _{vs} I ¹⁾	K _{vs} III 1)	Z 1)
	MM	стандартная конструкция	специальное исполнение	с делител	с делителем потока	
15	6		0,1 · 0,4 2) · 1	-		
10	22	4	2,5	3	=	0,65
	6		0,1 · 0,4 2) · 1			
20	22		2,5 · 4	-	-	
	22	6,3		5		0,6
	6		0,1 · 0,4 ²⁾ · 1	-		
25	22			-		
	22	8	2,5 · 4 · 6,3	6	=	0,55
32	40		6,3 · 8			
	. 40	16		12	-	0,55
40	40		6,3 · 8 16			
	40	20		15	-	0,45
50	50 40		8 · 16 · 20			
		32		25	-	0,4
65	65 65		20 · 32			
		50		38	25	0,4
80	80 65		32 · 50			
		80		60	40	0,35
100	89		50			
100		125		95	60	0,35

Параметры для расчёта шумообразования согласно VDMA 24422 – выпуск 5.79 -

Поправочные коэффициенты для клапана ΔL_G — Для газов и пара:

Значения согласно приводимой диаграмме:

 ΔL_F - для жидких сред:

$$\begin{split} \Delta L_F &= \text{-}10 \cdot (X_F - z) \cdot y \\ c \ X_F &= \frac{\Delta \rho}{\rho 1 \cdot p_v} \quad \text{if } y = \frac{K_V}{K_{VS}} \end{split}$$

Параметры для **расчёта расхода** по DIN EN 60534, часть 2.1 и 2.2: $F_L = 0.95 \; X_T = 0.75$

z = акустически определяемый параметр арматуры

Kvs I, Kvs III – При установке делителя потока St I или StIII в качестве шумопонижающего элемента. Отклонение характеристики потока начинается лишь при 80% высоты подъёма клапана по сравнению с клапанами без делителя потока.

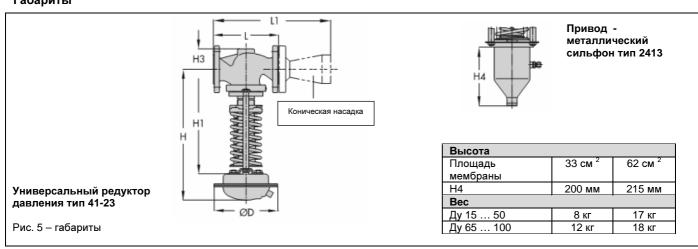

²⁾ при K_{VS} 0,001 до 0,01: клапан с микрогарнитурой без разгрузочного сильфона

Таблица 4 – размеры в мм и вес

Редуктор да	– размеры в явления	S WIWI PI DCC					Тип 41-2	3			
Условный диаметр Ду			15 20 25 32 40 50 65 80 100								
, 0,102.12.11. 2	Длина L	رت	130	150	160	180	200	230	290	310	350
Диапазон заданного значения в бар		y 16	130	100	100	100	200	250	464	310	556
	IЛпина I1 `	y 40	220	256	278	314	337	380	471	510	570
	Высота Н1		335				390		510		525
	Высота Н3		55			72			100		120
	КС	ваная сталь	53 - 70 - 92 98					-	128	-	
0,005	Высота Н		435								
0,03	Привод		Ø D = 490 mm, A = 120				СМ 2				
	Сила натяжени	ıя пружины F	600 N								
	Высота Н		435 490							610	
0,025	Привод		\emptyset D = 490 mm, A = 1200 cm ²								
0,05	Сила натяжени	ıя пружины F	1200 N								
	Высота Н		445 500						(635	
0,05 0,25	Привод		\oslash D = 380 mm, A = 640 cm 2								ı
	Сила натяжени	ıя пружины F	1750 N								
	Высота Н		445			500			620		635
0,1 0,6	Привод					Ø D = 3	80 мм, А =	: 640 см ²			
	Сила натяжени	ıя пружины F					1				
	Высота Н		430 480						600		620
0,2 1,2	Привод		\oslash D = 285 mm, A = 320 cm 2								
	Сила натяжени	ıя пружины F	4400 N								
	Высота Н		430 485							620	
0,8 2,5	Привод					\emptyset D = 225 mm, A = 160 cm ²					
	Сила натяжени	ıя пружины F	4400 N								
	Высота Н		410 465						5	85	600
2 5	Привод		\emptyset D = 170 mm, A = 80 cm ²								
	Сила натяжени	ıя пружины F	4400 N								
4,5 10	Высота Н		410				465		585		600
	Привод					\emptyset D = 170 mm, A = 40 cm ²					
	Сила натяжени	ıя пружины F				4400 N					
8 16	Высота Н		410			465			585		600
	Привод		∅ D = 1			70 мм, А :	= 40 cm ²				
	Сила натяжени	ıя пружины F	8000 N								T
0,005 0,05			28,5	29	9,5	35,5	37,5	41	57	64	-
0,05 0,6	Вес для серо	го чугуна ¹⁾	22,5	23	3,5	29,5	31,5	35	51	58	67
0,2 2,5	оккг		16	1	8	23,5	25,5	29	45	52	61
2 16			12	1	3	18,5	21	24	40	47	56

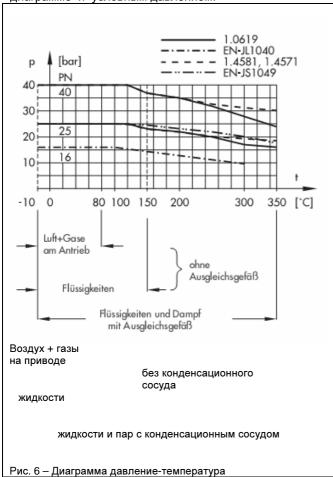
^{+10%} для стального литья, чугуна с шаровидным графитом и кованой стали

Габариты

Монтаж

Стандартно регуляторы монтируются приводом вниз, на горизонтальных участках трубопроводов, проложенных с некоторым уклоном в обе стороны (для стекания конденсата).

Регуляторы на микродавления устанавливаются вертикально приводом вверх.


Подробности см. Руководство по монтажу и эксплуатации FB 2512.

Направление потока – по стрелке на корпусе.

- Клапан и привод поставляются раздельно.
- Импульсная трубка монтируется Заказчиком, в объём поставки не входит; по желанию Заказчика может быть поставлен монтажный комплект импульсной трубки для отбора давления на корпусе (см. комплектующие).

Диаграмма давление-температура – по DIN EN 12516-1

Область применения клапанов, допустимые давления и температуры ограничены значениями, указанными в диаграмме и условным давлением.

Комплектующие

- Штуцер для подключения импульсной трубки 3/8".
 Другие штуцеры возможны по требованию
- Конденсационный сосуд для защиты рабочей мембраны от высоких температур. Необходим для пара и жидкостей при температуре свыше 150°C.
- Монтажный комплект импульсной трубки по запросу, с конденсационным сосудом или без него - для прямой монтажа на клапане и приводе (отбор давления непосредственно на корпусе, для заданных значений ≥ 0,8 бар).
- Коническая удлинительная насадка для удвоения условного прохода на выходе для размеров соединения Ду 15 / 32 до Ду 100 / 200, условное давление Ру 16 или 40.

Детальная информация о комплектующих – в типовом листе T 2595.

В заказе следует указывать:

Редуктор давления тип 41-23

Вариант исполнения ...

Ду ...

Ру ...

Материал корпуса ...

Значение K_{VS} ...

Диапазон заданного значения ... бар

Специальное исполнение, если требуется ...(см. Т 3095)

Комплектующие, если требуются

Права на изменения исполнений и размеров сохраняются

